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A3STRACT

The basic principles of the Galerkin finite element

,rethod are discussed and applied to two different

formulations; one using different basis functions and the

other using the vorticity-divergence form of the shallow

water einiations. Each formulation is compared to the

primitive form of the equations developed by Kelley (19-76).

The testing involves a comparison of three finite element

prediction models using variable size elements. Equilateral

elements significantly improve the solution and are used in

most of the comparisons. The formulation using different

basis functions produces poorer results than the primitive

fcrrulation. The vorticity-divergence formulation produces

S uDerior results while executing faster than the primitive

vodel. Fowever, it does require more storage and the

relaxation parameters are sensitive to the domain geometry.

The corputer implementation for the vorticity-divergence

rodel is discussed and the source listing is included.
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I. INTROrUCTION

Shtman f1972) claims that progress in numerical modeling

of the general circulation has been to some degree dictated

in the past by the rate of development In the field of

computer technology. However, the limited ability to

Darareterize the effects of small-scale Drocesses in terms

of large scale motions has been an equally important

limiting factor. Essentially, the major problem of numerical

modeling of the general circulation Is simply that of

producing a very long range numerical weather forecast.

Certainly the equations used In the models Tust be more

sophisticated to-include those physical-processes which- are

unimportant for a short range forecast, but may become

crucial as the length of the forecast is extended. Another

area where concentrated efforts have Improved the forecast

involves the computational techniques employed to

approximate and solve the governing equations of the models.

The motivation behind this thesis Is to Investigate the

application of a relatively new computat onal technique to

the field of numerical weather prediction. The finite

element method, long established in engineering, has been

seriously considered only during the past decade In

meteorology. This method has great potential for application

in atmospheric prediction models.

'I 2.2.1



A. BACKGROUND

The most common numerical integration procedure for

weather prediction has been the finite difference method in

which the derivatives in the differential equations of

motion are replaced by finite difference approximations at a

discrete set of points in space and time. The resulting set

of equations, with appropriate restrictions, can then be

solved by algebraic methods. Until recently, the finite

difference method has been the workhorse in atmospheric

prediction models, from their first computer implementation

to the present.

With the introduction of each new generation of

computers. the gap between numerical forecasts and

at'respheric observations has decreased. The rate at which

this gap decreased has slowed down and appears to be

leveling off. This would indicate that computer technology

may not be the primary obstruction to better numerical

forecasts. In fact, bigger and faster computers alone have

demonstrated their inability to significantly improve the

numerical forecast.

For example, a maJor limiting factor of finite

difference approximations is the truncation error. The

National Weather Service 7 Layer Primitive Equation flodel

(7LPE Model), operational from 1966 to 1980. had truncation

errors which increased at a rate proportional to the square

oO the grid spacing. That is, the smaller the grid interval,

12
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the smaller the truncation error. To increase Its accuracy

would require increasing the grid matrix density. This would

require increased computer storage and computaticnal time.

State of the art computers are capable of providing these

additional resources.

The problem now goes beyond numerical techniques and

computer technology. Operationally, the National Weather

service is not capable (due to monetary restrictions) of

providing a denser concentration of atmospheric

observations. Therefore, with the present density of initial

data (observations) and objective analysis techniques

(getting the data for grid points by interpclating from

observed data sources), reducing the grid spacing further on

the 7LPE Mode] does not significantly increase the accuracy

of the solution.

This additional computer capability can not be utilized

using finite difference methods. Therefore, new numerical

integration techniques must be investigated, such that given

the same density of observed data, superior sclutioqs are

produced.

Two alternative techniques, the spectral method and the

A finite element method, have started to gain attention. 3oth

the spectral and finite element methods require more

computational time per forecast time step than does the

finite difference method. For example, the finite element

method requires an equation solver to invert a larger matrix

13



at each time step for each variable. In this sense, these

methods were held back by computer technology, but recent

advances in computer technology (i.e. larger and faster

storage devices, multi-processors, eto) have made these

alternative numerical techniques competitive.

for long range weather predictions, the spectral method

applied over the globe or hemisphere is a natural method,

due to the existence of efficient transforms for the

nonlinear terms on spherical geometry. It also eliminates

the truncation error for the horizontal space derivatives

and the nonlinear instability (aliasing). For these reasons,

global spectral models have been developed and implemented

on an operational level, replacing the global finite

difference models.

Eowever, because the spectral harmonics are globally

rather than locally defined, it is thought that for problers

of more detailed limited area forecasting, the finite

element method is more suitable. Pioneering work to adapt

finite element methods to meteorological applications has

been done by Cullen (1973,1974 and 1979), Staniforth and

Mitchell (197), Hinsman (1975) and Kelley (1976). The most

recent finite element meteorological model at the Naval

Postgraduate School was written by Kelley (197E) with the

collaboration of "r. R.T. Williams. It is this study that

will serve as a basis for this thesis. The model written by

relley will be altered and used for comparative testing with

14
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Improved finite element forms implemented by this author.

Come of the techniques and codes developed by Kelley are

alsc employed in this thesis. Older (1981) develcped a

techniue to smoothly vary the grid geometry in the domain.

This technique is also implemented both on Kelley's model

and with the new formulation to give greater versatility

when testing the model performance.

3. 03JECTIVES

The objectives for this thesis can be divided into twc

categories: 1) reteorology, 2) computer science. First, the

meteorological objectives of developing improved finite

element forms for shallow water equations are as follows:

1) - Older (1981) after collaboration with Dr.

M.J.P. Cullen, showed how equilaterally shaped elements

produced significantly better results than did other

triangular elements. Kelley (197E) used right triangular

elements in the implementation of a two-dimensional finite

element model using the primitive form of the shallow water

equations. A considerable amount of small-scale noise was

observed in the solution. Eereafter, this model, which was

developed by Zelley (1976), will be ref'erred to as the

primitive model. This first objective involves

re-implementing the primitive model using equilaterally

shaped elements and comparing the resnlts to those in

Kelley's thesis.

°1 -r



2) - "~Wlliams and Zienkiewicz (19e1) presented new

finite element techniques for formulations for the shallow

water eoaatios, which use differently shaped .unctions to

approxirate the different dependent variables, which in

effect stagger the variabes. Schoenstadt (1980)

demon strated the advantage of spatial staggering of

dependent rariables in finite difference models. The

application of this technique to finite element models is a

natural extension, and excellent results were obtained by

Williams and Zienkiewics (1981) from application of these

new formulations on linearized one dimensional cases. The

objective here is to implement the new forms on the

primitive model and again do quanitative cooparisons of the

results.

7) - The major emphasis in this study deals with the

implementation and comparison of the vorticity divergence

form of the shallow water equations, which is described in

detail in Chapter II. This formulation has the following

advantages. First, the geostrophic adjustment process is

treated better than in the primitive form of the equations.

Secondly, the velocity and height fields are evaluated at

the same grid point, where the best primitive form requires

staggering these dependent variables. And thirdly, a larger

time step is allowed due to the semi implicit form of the

equation. Again comparisons between the results from the

vorttcity divergence and primitive model are presented.

16



The computer science aspect of this thesis was primarily

devoted to the implementation of the different models and

the style and architecture of the program. Finite element

methods require more computational time than do finite

difference methods, not only in the solution of the

equations. but also in the amount of computation required to

evaluate each term in the equations.

The Irolementations of these two dimensional models,

although complex when viewed from the surface, have a lot of

generality and redundancy in the operations required.

Versatile modules can be written to ease the implementation

and facilitate changes. The objective here is to efficiently

implement these new forms and demonstrate the utility of

these versatile modules for future implementations.

I
C. THESIS STRUCTURE

This thesis presents the results obtained from tests of

the various finite element -formulati-ons. The xesults. are

compared to those from the primitive model written by Kelley

(197e). Accompanying the results is a detailed discussion of

the reform'lation and implementation process.

Chapter II of the thesis presents a tutorial of the

finite element method and the area coordinates system used

In the evaluation of the element integration. The Galerkin

finite element method used in all the models is developed

and applied to the advection equation in one dimension.

17



Chapter III presents the detailed descriptton cf the

vortl.Mity-.ivergence shallcw water model. Eere the equations

are shcwn and written using tie lalerkin Tethod. A

-iscussicn of the computational technique used is presented

along with the model's physical parameters.

Chepter IV presents a descriptive overview of the

-omputer implementation. The chapter includes a list of

options available for testing, a brief description of the

rratrix corpacticn technique and the formulations of the

versatile modules used to implement the complex equations.

Chapters V through VII discuss the results obtained fror

the different experiments. Chapter V briefly describes the

primitive model used for all comparisons and the results

from changing the element shape to equilateral triangles.

Chapter V! reformulates the primitive model so that the

geopotential is staggered with respect to the velocity

variable. For simplicity, the continuity equation is also

linearized. Chapter VII compares the results from the

vorticity-divergence model developed in Chapter III to those

from the primitive model.

The last chapter surrarizes the results from all the

experiments and Identifies what areas require follow on

work. The source code for the vorticity-divergence model is

presented in Appendix A.

16



II. FINITE ELEVENTS

As is often the case with an original ievelopment, it is

rather difficult to quote an exact date on which the finite

element method was invented, but the roots of the rethod can

be traced back to these separate groups: applied

!rathemfaticians, physicists and engineers. Since the early

developments of the finite element method, a large amount of

research has been devoted to the technique. However. the

finite element method obtained its real impetus by the

independent developments carried out by engineers. Its

essential simplicity in both physical interpretation and

mathematical form has undoubtedly been as much behind -its

popularity as is the digital computer which today permits a

realistic solution of even the most complex situations.

The name " finite element " was coined in a paper by

P.W. Clough, in which the technique was presented for plane

stress analysis, as discussed in Bathe (1976). While finite

element methods have made a deep impact via the field of

solid mechanics, where it can be said that today they

represent the generally accepted method of discretizing

continuum problems for computer-based solution, the same

appears not to be true in fluid mechanics or atmospheric

prediction.

19 
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Numerous finite element formulations are currently

available. Strang (1973), Norrie (1973) and Zienkiewicz

'117i) present detailed theoretical discussions of each. The

Galerkir method, the most popular finite element rethod, is

described in detail below and used in the equation

o mulati on later.

A. FINITE ELEM!NT CONCTPT

The problem of solving partial differential equations

can be specified in one of two ways. In the first, finite

difference methods specify the dependent variables at

certain grid points in space and time, and the derivatives

are evaluated using Taylor series approximations. Secondly,

the calculus of variation requires the minimization of a

functional over a domain, where a functional is defined as a

variational integral over the domain.

The calculus of variation approach creates a purely

physical model where the functional equivalent to-the known

differential equations are known. Its major disadvantage is

that it limits the method only to those problems for which

functionals exist. Finite element methods, an extention ofI
this method. derive mathematical approximaticns directly

fror the differential equations governing the problem. The

advantage here is that it extends the method to a range of

problems for which a functional tay not exist, or has not

been disco)vered.

20
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The finite element method divides the domain into

subdotrains or finite elements (usually of the same forr).

Nnces are located along the boundary of the elements,

usually at the element vertices and at strategic positions

(midside, centrold, etc.) in the interior and on the sides

of faces of elements.

Commonly used elements are triangular, polygonal or

polyhedral in form for tvo-dimensional problems. The choice

oO elements depends on the type of problem, the number of

elements desired, the accuracy required and the available

computing time. To begin vith, the element must be able to

represent derivatives of up to the order required in the

solution procedure, and to guarantee continuous first

derivatives across the element boundaries to avoiA

singularities. Triangular elements are employed in this

thesis because they can be used effectively to represent

irregular boundaries, and/or geometry, and also to

concentrate coordinate functions in those regions of the

domain where rapidly varying solutions are anticipated.

Consider the problem of solving approximately the

differential equation

L(u) = f(x) 11-1

where L is a differential operator, u the dependent

variable, and f(x) is a specified forcing function. Suppose

that I-1 is to be solved in the domain a x b and that

21



appropriate boundary conditions are provided. The residual P

is formed from II-1 as follows:

L(u) - V~x) - R 1-

The critical step is to select a trial faimily of

approrimate solutions (the members of a trial family. are

often called basis functions). .he basis f'n-tion is

prescribed 'functionally) over the domain in a piecewise

fashion, element by element, and are generally a corbination

of low order polynominals. A one dimensional example is

shown in Figure 1, wherein the domain (x axis) is diviled

Into six elements (line segments) A through F. The basis

functions are linear and one is shown for node 4 only in

Figure 1. The function has a value of unity over node 4, and

decreases linearly to is zero at nodes 3 and 5 and zero

elsewhere.

Consider a series of linearly independent basis

functions V (x), as in Figure 1. Now -u(x) can be

approximated with a finite series as follows:

U(i)u 1 V (x) %V 11-3
II

where $ is the coefficient of the jth basis function and has

a value equal to u at node J.

Substituting this approximate solution 11-3 wherever u

appears in the differential equation II-1

L(OjVj) - f(x) - 11-4

22
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The best solution will be one which in some sense

reduces the residual R to a minimum value at all points in

the doiain. 3definition, the residual obtained usin, the

exact differential equation is identically zero everywhere.

The residual R, formred In equation 11-4, is mintizied when

multiplied with a weighting function, integrated over the

dorain and set equal to zero. This process is known as the

weighted residual method

b

J RW dx = 11-5

a

where W is the weighting function and is referred to as the

test function in the following development. The weighted

residual method minimizes the errors of the residuals, such

that the summation of all the positive and negative errors

add to zero.

The Galerkin method,. the most popular finite -elvne-t

method, is more generci in application and is a specipl case

of the method of weighted residuals, as discussed by Pinder

and Gray (1977). The requirement imposed on the weighted

residual method forming the "alerkin rethod is:

the test (weighting) function be equal to the

basis (trial) function W = V . This process

leads in general to the best approximation of

the solution.

24
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I

The final Galerkin form is obtained by substituting 11-4

into 11-5, yielding

b b

fWiL(Ojllj)dx - f WVf(x)dx = -II6

a a

If this procedure is repeated for N Doints in the dorral ,

a system with N equations and N unknowns will be generated.

3. GALEDKIN APPLICATION

The following example taken in part from Haltiner and

Williams (19e0) applies the Galerkin rethod to the advection

equation with linear elements

au Bu

+c--=II-7
at ax

This equation is dependent in both time and space. The

treatment of time variation is important for most

meteorological prediction problems. The Galerkin irethod is

not applied to the time dependence because it is more

convenient to use finite differences in tiDre,as is done with

this example later. The same treatment is applied tc the

prognostic equations later, where two finite differenclng

methods are employed to do the time integration.

The "alerkin procedure represents the dependent variable

u(x.t) with a sum of functions that have the Drescribed

25

...............- - ---- -F" _- e ..



spatial structure as in Figure 1. Approximate u(x,t) with

th.e finite series as follows

u(x,t) = j~l j= (t)gj(z) = wjVj 11-8

where the coefficient i (t), a function of ti.Te, is the

scalar value of u at node J. The basis functions, " .(x), are

functions of space only and j equals 1 to 7 for the example

In Figure 1. The repeated subscript in this forTr implies a

sum cver the repeated subscript.

The Galerkin equation for the advection equation 11-7 is

obtained by setting L = c(b()/bx) and substituting in the

approximate solution 11-8 wherever u is found.

b b

V -V )VVdx + c I 0. j -- J 11-9j=1 Bt fJI J=j ax

a a

where i = 1 to N, V1 the test function and-V.the-basis

funtion. The domain of integration is given by a 6 x A b.

and the integration is done in a piecewise fashion, element

by element.

in this one-dimensional case, an equation like 11-9 is

writter for each node, i. Considering node 4, what are the

possible non-zero contributions froi. equation 11-9? Figure

2 illustrates the basis and the test function interaction

during the piecewise integration process. From the
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Flg1e.2. Buis and test function interaction

during the piecewise Integration process.
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le-tr.ition of the basis and the test function, locally

eefined as unity at node and linearly decreasing to zero

at , ± 1 and zero elsewhere, the only non-zero

contributions are irade when .1 = 3 over element C, j = 4 over

elements C and 7, and J = 5 over element D.

The evaluation of 11-9 for I = m, which is given in

Haltiner and Williams (1981), leads to the equation:

i d (u,,+ + 4ur +u ) (Um+1 - ur-1) = 1I-10
-Edt r-. 2imX

The boundary points, which in this example are nodes 1

and 7, are evaluated in the sare way as the interior nodes,

with the exception that cyclic conditions are imposed.

The time discretitation of II-10 is done using-a- finite

di-ference scheme. Applying leapfrog time differencing gives

the following equation

(unl - n-i + 4(un+ ni n+1 - n-I-iuat uri 3) 112 At m+1 2- am~ um) +  Z- M-

(jun  -u n  ) - 0 11.
-- " in+1 m

The resultant equation set, in matrix forr, contains an

NxN matrix where N Is the number of nodes.

The transition from one-dimension to two Is

m athematically identical. The domain is now subdivided into

finite areas, which are triangles in this implementation and

28
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the basis functions are linear. However, row they are

pyrarrid shaped with value unity at the center and decrease

to zero at the surrounding nodes, and are zero elsewhere.

Yigure 3 shows this basis function for node ?8 outlined in

heavy black. The value at any node again can be approximated

by :1-3, where j ranges over all nodes connected to node I

inrl'ding I itself. The connectivity for node i = 28 in

Figure 3 is j = 15,16,27,28,29,39 and 40.

The integration is still over the entire domain. With

both the basis and the test function zero over the dorrain,

except locally over each element, the global integration can

be performed by integrating locally over each element. By

definition, this integration can be expressed as an inner

product of both functicns (i.e. basis, test) as follows:

<' iV> = ff VVjdA 11-12

A

Using this definition and the repeated subscript

notation equation 11-9 becomes

> C .V 0 11-13

where the dot lirplies differentiation with respect to time,

and the second subscript implies differentiation with

respect to the second subscript. The local integration -ay

be calculated directly from exact expressions derived from

area coordinates described in detail in the next subsection.
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51 52 53

3 '4 56

Figure 3. Basis function for node 28. The

shaded area is the complete basis function

and the V, where j - 15, 16,27,28,29,39,40

are jth node basis functions for node 28. The

dashed line at node 28 has length unity.
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In surrary, the Galerkin procedure involves subdividing

the doi'ain into finite elements, approximating the dependent

variables by a linear corrbination of lcw order polynorrials

and substituting them into the equations. The equation is

rultiplied by a test function, integrated over the entire

domain and finally the resulting system of equations is

solved.

C. AREA COORDINATZS

While the Cartesian coordinate system is the natural

choice of coordinates for most two dimensional problems, It

is not convenient when working with triangularly shaped

elements. It is therefore necessary to define a special set

of normalized coordinates for a triangle. Area, or natural

coordinates as they are commonly called, reduce the

formidable task of integrating products between the basis

and test functions and their derivatives over a triangular

element and result in easily computable -and exact

expressions.

The following development is taken in part fror the

formulation by Zienkievics (19I71). Consider the triangular

element illustrated in Figure 4. There is a one-to-one

correspondence between the Cartesian coordinates (1,Y) and

the area coordinates (LI,L 2 ,L 3 ) for the element. Let A

denote the area of the triangle and Al , A2 and A3 the areas of

the subtriangles in Figure 4 such that A - A +A2 *A3 .
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The relationship between a point P(I,1) in Cartesian

roordinates and P(L1 , L, 3) in area coordinates can be

seen by the following transformations

X L X + L2X 1.9

T , * 12!, + 1.3 11-14
1 = I  +2 + Lz 11L3

1 L I  L2 + L 3

where L L2 -2 a= d L = A3
A A A

and

LI = ,2A + b1 X + aiT) /2A

L2 = (2A + b21 + a2y) /2A 11-15

L3 = (2A + b3X - a3T) /2A

where 2A is twice the area of the triangle and the a's and

b's are defined as in Figure 5.

It is worth noting that every tuple (L1 , L2 , L3

corresponds to a unique pair (1,T) of Cartesian coordinates.

In Figure 4, L a 1 at vertex 1 and 0 at vertices 2 and 3. A

linear relation exists between the area and Cartesian

coordinates which implies that values for L vary linearly

over the triangle with a value one at vertex 1 and a value

of zero at vertices 2 and 3; and sirilarly for L~and L3.

This demonstrates how each component in the tuple (LI. L2 , L3)

behaves over the triangle as do the linear basis and test

functions over the element, as was seen in Figure 4. Clearly

Li. -i 1-1
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where V1 is a linear function of the Cartesian coordinates

(i.e. basis, test).

Zierkiewicz (1971) shows that it is possible to

integrate any polynomial In area coordinates using the

sirple relationship

/f , r ! n! p!
=f L 2' LnLn12A I-172 3ddy + n + p + 2)!

A

where r, n and p are positive integers and A is the

eleirentary area. For an example of this integration

technique using inner product notation, equation N1-12 is

evaluated as follows

ff 22! 0! 0!Aff xddy = 2A = i J(2 + 0 + 0 2)!

A

ji 1 i1! 01 A

v i  dxdy = 2A=- i j
(1 + 1 + 0 + 2)! 12

The differential operations in area coordinates follow

directly 1rom the differentiation of (II-15) where

3b b

1z I=1 2A i

and

- . 4 a1 11-20
by i-1 2A bL
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is explained earlier (see Equation 11-16), Viis a linear

frrn-tion (i.e. basis, test) which equals a component L, of

the area coordinate tuple. Therefore

bL. r 1 if I J

Consequently Vj ax for 1 1 is

=i b1 V1  b2 b I b3 a 1 = _

= = -+ + = - 11-22
jX 2A LI  2A L2  2A L 3  2A

As an example, consider the inner product <Vjx,Vi> at

vertices j = 2, i 1. This integration is evaluated as

V 21'V('> 7 1 dxdy
2A

A 11-23

b 1! 0! 0! b2
-- 2A -
2A (1 + 0 + 0 + 2)! 6

Therefore any inner product in the formulation can be

readily evaluated using area coordinates. Another benefit of

using this coordinate system is that all of the inner

products are functions of space only and need be computed

only once.

35



III. SEALLOW WATER WOEEL

The governing equations for this model are derived by

making several simplifying assumptions on the primitive

eiuations of motion, which then give the barotropic shallow

water equations. Bowever, as mentioned previously, the

shallow water equations describe many significant features

cf the large-scale motion of the atmosphere, and therefore

have been used la numerous experiments over the years.

The vorticity-divergence form of the equations has

several advantages. Williams (19e1) has shown that the

geostrophic adjustment process is treated much better with

the vcrticity divergence formulation than with a direct

treatment of the primitive form of the shallow water

equations, such as was used by Kelley (197C). This

formulation also allows the velocity components-and the

height to be carried at the same nodal points, whereas the

best scheme for the primitive form of the equations requires

stagering of the fields, as seen in Schoenstadt (1980). The

vortijity divergence form of the equations is also

convenient for the application of semi-implicit

differencing, which saves considerable computer time.

_J
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A. G0VIRNING EQUATIONS

The pri-ritive form of the shallow water equations in

Cartesian coordinates is

ataxb

at B

- = _ -Qu - - 111-2
at ay a

Equation fTIl-i) is the continuity equation and the I11-2

and 111-3 are the momentum equations, respectively. The

variables are defined as follows:

ry- the spatial coordinates oe the domain

u,v - components of the wind vector

geopotential =(gravity x free surface height)

- mean geopotential = '49,000 meters,2 /seconds 
2

t time

K- kinetic energy

Q- absolute vorticity + ( f +

S relative vorticity

f- carohs force (mid-channel f-plane)

rl divergence

The shallow water equations can be written in

vorticity divergence form as follows:
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bt x by

- = - () - -(vC) 111-5
7b t b-x by

-+ = - -(vC) - a -Q) V2 1-T bx a y

where 111-4 is the same continuity equation as III-1, 111-5

is the vorticity equation and I1-E is the divergence

equation.

3ecause of the vorticity divergence fortr of the

equations, it becomes necessary to solve the time dependent

variables S and r in terirs of W, the stream function

(rctational part of the wind), and ', the velocity potential

(deivergent part of the wind). The initial fields for the

model will be in terms of W, I and $.

The following diagnostic relationshiDs are defined and

used later in the solution of the equation iet.

u =  y y+ X III-

V = Tx x y, 111-8

where the subscript implies differentiation,

2 2

K = - kinetic energy, 111-9
2

U = U(.5 + f ), III-10
vQ =v(M + f, II!-llJ

ox - u, III 12

- IV, 111-13
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= 2 .III-1.4

fl = 72 7.I I--

3. _CUAT-ON FOPRULATION

!he Galerkir. method described in Chapter II is now

anDlled to equations 111-4 through I1-15. For ease of

cornrehension. the shorthand inner product n'otation as In

11-12 will be used to simplify the equations. The detailed

Galerkir. formulation will be shown for equation 11I-?, the u

com'onent of motion. The tethod follows directly from, the

exarple in Chapter II of this thesis, which in turn follows

in part from Kelley (1976) and Ealtiner and Williams (1981).

Consider equation I1-? and assume that each variable u,

q' and 'X is aoproxitrated by

u uj V ,

S = ' 'j Vj , Il1

% = Vi

where the repeated subscripts indicate summation over the

range of the subscript. Substituting these approximate

solutions into III-7 yields

= -" IV - V )111-17

Since only the basis function V is a function of space,

TIT-17 may be further simplified by factoring out the time

dependent coefficients.
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The next step requires multiplying by a tes, function 7

as discussed in Chapter I, and integrating over the area

dome in

uji ff V j V i dA - ' dA

A A

A

The final form in inner product notation is

uj VjVi >  - <IT VjyVi + <% jVjx,V> 111-19

where the double subscript implies differentiating with

respect to the second subscript.

The three prognostic equations (111-4, 111-5 and 111-6)

are sirilarly advanced using the Galerkin technique to

become, respectively:

<j Vjv> I <rvj,v1 > = - <ocJVJ..V>- <jvjy, v> .NI-20

<i j V > = -<VuQ) V - <(veC) V. V '>11-21

d V i- <iv 2VjVi> = <(vQ) 1 j Vi> - <(uQ)jVjyVi>

+ Kj v2 VjV I> ii-22

where v 2 is the Laplacian. operator and the dot implies

differentiation with respect to the time dependence in

111-4, 111-5 and II-6.

S. ilarly, Galerkin equations are formulated for

equations III-? through III-1!.
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C. TIMi rIsCRLTIZATION

The equation set III-20, 111-21 and 111-22 is arranged

so that all the terms on the left hand side can be treated

iLplicitly, and all the terms on the right hand side can be

treated explicitly. The explicit time integration will be

done by the leapfrog difference method. To start the time

integration, two forward half steps are taken, after which

the full leapfrog schere is used for the remainder of the

forecast period.

The vorticity equation 111-21 is solved independently

fror III-20 or 111-22. However, III-20 and 111-22

(continuity and divergence equations, respectively) are

coupled. To explicitly solve either, decoupling of the

equations is necessary. In this thesis this is done through

algebraic substitution of 111-22 (solved for D(n+l)) into

II.-20. Once the time integration is performed on I-20,

111-22 can be solved for D(n+l) using the 0 (n+l) value.

The final prediction equations are

+;l<Vjx,vix> + <vjy,iy> + C<VJYi>1

- [BDRT] n+1 -[3RY n-1

. n< j9V > - u

_- k[vj.i,
2[v) ix )j<>P+<V j y, Vi >.1

-2[(vC)n(V Vi > _ (uC)n(V ~Vi >1

- 2K [lVjx,VLX> + <Vjy,V>]-

- 3[(Ou) <vj,V I > + (0v)'(Vjy.V1 >1

111-23
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where A = 4/24t) , B = , C = B/(2at) and [BrRT] is the

geostrophic boundary contribution, see Section I.

n+1 sn-1
t V u) j Vj V i >

- 2at [(uC( V] 1I-2

n+1 n-1 n1<i
S i~ ) r r <I VV> + ( &t/2)[0 j'V

i Kv1< V jVj + 2(vQ) i(<Vjr~i

- 2(uQ)n jVi > n ,2 V i >] 111-25

After these three elliptic equations are solved, the

history of the variables III-? through 111-15 is updated.

A large time step can be applied to this form of the

shallow water equations due to the semi-implicit nature of

the equations. This is very important since finite element

,ethods generally require more computer time per time step.

The vcrticity-divergence formulation acts as a filter, which

slows down the high frequency waves in the soluticn. The

two-dimensional advective stability criterion for a linear

element, derived by Cullen (1973), was used to determine the

correct time step.

4
At = Fe - 111-26Icl(

whereAt is the time step in seconds, Ax the shortest grid

spacing in meters and c the fastest phase velocity.
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D. COrPUTATIONAL TECHNIQUES

The final prognostic equation set requires the solution

of e reliholtz equaticn for 0 and Poisson equations for V

and 7. The most comon method of solution used by

rreteorologists has been the successive over relaxation

method (SOR) in which an initial guess of the solution is

trade and then progressively improved until an acceptable

level of accuracy is reachel. SOR is employed in the

solution of the equations,where 411-23 can be represented by

v2 [M] fx } - C[M]{x} {b} 111-27

and III 24, III 25 by

2 [M]fx} - {b} 1I1-28

where v2 the Laplacian operator, EM] - <VjVi> matrix, {x

- the dependent variable in vector notation, C - constant as

in 111-23 and fb} the right hand side of the equation or the

forcing function.

The mass matrix [M], dimensioned (nzn), is a matrix of

coefficients whose rows are the equations of the system to

be solved. There exists a one to one correspondence between

the rows of the mass matrix and the nodes of the domain.

Each equation has a term (column) for each node, where a

non-zero termp represents connectivity. Notes are connected

if they are both vertices of the same element. Obviously (M)

is a sparse matrix containing the inner products for the
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left hand side. Chapter 4 of this thesis will describe the

m atrix compaction procedure.

The forcing function {b}, iensioned Inxi', -Ivclves

only variables at the current time step and is easily

computed using four very versatile subroutines described in

detail in the next chapter.

The initial guess to start SOR is the previous time step

solution. An average of 30 passes per equation are needed

for each time step. The solution is consilered to have

converged to its final value when the residual for each node

has been reduced to some acceptably small value.

The diagnostic equations 111-7 through 111-15 must also

be solved every time step. However, the same technique is

not used for these equations. Dr. 4.J.P. Cullen suggested an

under relaxation scheme for which three passes over the

dcmain should produce a solution of acceptable accuracy,

since the coefficient matrix is so strongly diagonally

dominant. Mass lumping of the coefficient matrix is used for

the first guess. This technique requires replacing the mass

matrix rml by the identity matrix EI]. A first guess of this

type Is able to describe most of the large scale features,

which in turn reduces the number of iterative passes over

the field. Successive passes converge to solutions which

describe smaller scale motion, approximately to the same

order of magnitude as introduced by computational errcr, so

that further iterations are not needed.



E. GRID GEOMITRT

'he domain of this model is a cylindrical channel, with

total length of 4045 Im and width of 1503 Im. The channel

sirulates a belt around the earth and it proves to be an

excellert test bed for comparing with the finite element

formulations used by Kelley (197e) and Older (1981).

The domain is subdivided into equilateral triangles as

shown in Figure 6. Most of the test runs for this thesis use

a 12xlc mesh which has 156 nodes and 289 elements. This

implementation is not restricted to one grid pattern. The

technique developed by Older (1981) to vary the nodal

geometry smoothly to achieve areas of denser and coarser

resolution is also implemented, as in a third grid pattern

that varies the nodal geometry abruptly. A short discussion

of these nodal geometries with accompaning illustrations of

each is presented in Chapter VII, where the different test

cases are described.

Cyclic continuity is assured in the x direction by

wrapping the domain around the earth to form a cylindrical

domain. This has the advantage of eliminating the east-west

boundaries and it simulates the flow around the earth. The

only boundaries cn this domain are the north-south walls and

their treatment will be discussed shortly.

..........-
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F. INITIAL CONDITIONS

As mentioned previously, the refortrulation of the

zverning eqi:ations into the vorti.ity-divervence

shallow water equation set requires solving the time

dependent variables in terms of the stream function and

velocity potential. The continuity equation is not altered,

so that its solution is expressed in terms o: 0.

For the basic testing of the model's performance, simple

analytic sinusoidal initial conditions are used to insure

the rost accurate analysis possible ana to simplify the

comparisoas.

The sinusoidal initial fields are graphically shown in

Figure 7 as 3-dimensional surfaces. The geopotential field

consist of a half sine wave in the y direction and a single

cosine wave in the x direction. The stream function IV,

calculated by dividing the geopote.tial field by the

coriolis force, has the same physical structure as 0. The

velocity potential I has a single sine wave In-- the x

direction and a half sine wave in the y direction.

These initial conditions are computed as follow.

0 oAsin: c os52 - fot (y -

= 0/fo 111-29

X = Csinc lstno 2  quasi-geostrophic divergence

where A - arbitrary amplitude

fo - coriolis value for mid-channel latitude

47
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a) %and '7initial fields.

b) initial field.I

Figure .3-dimensional view of the inita1 fields.
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U mean flow

Ym- id-latitude value of y

- rean free geopotential height
=49,00 m2/5 2

3(2 27rxr/L

r - wave number

W channel width

L - channel length

C - + §B)

3- or2 +Y2
1 2

,. BOUNDARY CONDITIONS

3oundary conditions are only required on the north and

south wells of the grid domain. Due to cyclic continuity,

the domain is wrapped around creating a cylinder eliminating

the east and west boundaries. However, careful attention to

detail is needed during the implementation to assure this

continuity. Separate boundary conditions are applied to each

of the predictor equations 111-23, 111-24 and III-25. These

conditions are computed for the wall nodes only and are

applied during each pass through the relaxation scheme.

The vorticity equation 111-24, the most sensitive of the

predictor equations to solve, requires I on the north-south

boundaries to remain constant for the entire forecast

period. Since this equation is solved in terrs of l, the

iritial north-south T values are saved and assigned to the

qa
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boundary points after each pass through the relaxation

subroutine.

The Droper boundary condition for the divergenze

equation !11-25 would be aX/n = 0. However, for the purpose

of this stud., there is more interest in the sinusoidal

variation in the y directicn and not in the region of the

walls. Therefore I = 2 is appropriate.

The continuity equation 111-23, the most complex

predictor equation, requires that there be no mass flux

through the north-south walls. The geostrophic boundary

condition

- = -uf 1II1-30

is applied to the north south boundary nodes for the terms

[BrRT] in equation 111-23. Integrating the inner product

i 7 v > by parts produces the boundary terms

f f v2(0jVj)Vi dxdy ff 7.(vlj )Vi dxdy

f (v,(V v( )) - TO v).vv! dxdy
yx

-$ iv(OjVj )-R dr - ff TV I v(OjVj) .4xdy
yr

rBDRI] - Oj[<VjxVix> - <VjyViy> 111-31

where i is a unit vector normal to the domain and dr is the

differential distance along the path of integration on the

perimeter of the domain.

50

iT

_ _ _ _ m I4III



The geostro-hic boundary condition IT.1-3 is substituted

into the :ontour integral in equation 111-31 and put into

;alerkxi. for, in the saire way as in the one-dirensional.

advective equation In Chapter II. The r'esulting term is

derived as follows

V V.4 7 V)-'n dr V V dii J Y

-AhX
- -(u + 2u + uj-. ) 111-32

louation 111-32 appears twice in the continuity equation

III 23, for time levels (n+l) and (n-1). All values of u are

known -or time (n-1), since they are saved from the previous

calculations. Fowever, u(nsl) has not been computed. To

solve for u(n+1), both T(n+1) and 7(n+1) are needed. T(n+1)

is solved first from the vorticity equation. 1(n+1) needs

0("+i) as part of its solution and 0(n+l) needs u(n+l) in

4-ts solution..-To avoid this problem, it-is assumed that

X(n+l) has a negligible contribution to the solution of

u(n+l) and only V(n+i) is used.
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IV. C PUTR IMPITMENTATION

'he formutlation and general theory of the finite element

method was presented in the previous chapters. The objective

ir this chapter is to discuss scre important computational

aspects zertaining to the implementation of the fi.ite

element prediction systeir.

The main advantage that the finite element method has

over other prediction techniques is its generality.

Conceptually, it seems possible by using many elements, to

approximate virtually any surface with complex boundaries

and initial conditions to such a degree that an accurate

solution can be obtained. In practice, however, obvious

engineering limitations arise, a most important one being

the cost of the computation. As the number of elements is

increased, a larger amount of computer time is required for

a forecast. Furthermore, the li:nitations of the program and

the computer may prevent the use of a large number of

elements. These limitations may be due to the computer speed

and storage availability, or round-off errors propagated in

the computations because of finite precision arithmetic.

Also, the malfunction of a hardware component, if the

prediction is carried out using many computer hours to

execute, can be a seriou!. problem. It is therefore desirable

to use efficient finite element programs.
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The effectiveness of a program depends essentially or

the following factors. Firstly, the use of efficient finite

elerent techniques is icortant. Se:cn0a! , efficient

programming methods and scphisticated use of the available

computer hardware and software are important. The third very

impcrtant aspect in the development of a finite element

orograr is the use of appropriate numerical techniques.

The virticity-divergence model described in the previous

chapter is implemented on the 13M 3033 computer located at

the Naval Postgraduate School. Some notable features of its

architecture are the three trillion bytes of virtual mass

storage, oO which eight mega bytes are available to each

user, nd the !7 nanosecond machine cycle time. The model is

executed mostly using a 12x12 element domain requiring 400k

bytes of storage and 30 seconds of CPU time to execute.

Ezzeeding execution time and/or available storage is not a

problem, in fact the system allowed a lot of flexibility

during the implementation phase of the model.

The source code is written using FORTRAN IV and compiled

on an optimizing Fortran 2 compiler. Appendix A contains the

source code listing, which is divided into five subdivisions

delineating the logical structure of the program.

A. PROGRAM ARCEITECTURI
Program features incorporated in the model are:

1) "odularity. With only a few exceptions, each

module is limited to one page of FORTRAN code. This makes it
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easier to comprehend the program. Fach module performs only

one t-sk. Fcr exar'ple, subroutine CONT'C cornutes the value

*-' the fnrcIng terms for the continuity equation. Likewise

there is also one rcdule for the divergence and vorticity

equations. To implement a new set of equations, only these

rcd.les would have to be altered.

2' .asily controllable switches. Switches Tay be set

to either print, plot or tabulate harmonic analysis data for

rost of the available fields. The ability to display

intermediate results allows each portion of the algorithm to

be ronitored for computational adiustments. This also makes

it easier for unfamiliar users to become acquinated with the

cornutational model.

3) 'Forcing term subroutines. In previous

iplementaticns. each forcing term was calculated by a

special subroutine. In this implementation, the calculations

are accomplished by general purpose routines which simplify

the 4 rplemen-tation of the omplex prognosstic.equti-..-This-

allows implementation of different equation sets (i.e.

laroclinic yodel) over the same domain with rinimal effort.

4) Deccumentation. Each 7ariable is defined by a

short phrase (Appendix A, A.). The function of each module

is described in an introductory paragraph. Shared data is

placed in named common blocks and identified with each

subroutine which uses them. A subroutine index is given.

* _________________ ----
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Main Program

The main program is short, calling only six modules

whi-h reflect the basic sequential flow cf the Todel. It

starts with initialization of all model parameters (i.e.

rcdel options, domain, finite element arrays, inner

products). Tt then initializes the input fields (i.e.

geopotential heights, stream function and velocity

potential) and is followed by initialization of all

remaining dependent variables. At this time the model is

totally initialized and time integration begins. As

mentioned previously two techniques are employed for time

integration, each having its own module. Upon completion of

the last forecast, the program terminates.

Arrays are the only data structures used and are

grouped using 19 different common blocks. Several arrays are

used as static link lists, as described in detail later,

which simplified the algorithms. The cormon block format has

the advantage of reducing the overall execution time of the

propram. M'ost of the arguments passed during a call to a

subroutine are contained in coniron. This requires less time

to execute since no parameter passinp is required for the

areutrents. Another benefit of this format is that the code

becomes less cumbersome and more readable. Each variable and

array is defined In the first subsection of Appendix A along

with a page index for the subroutines.



2. Initialization Phase

Appendix A, Section C contains all the subroutines

ised during the initializaticn phase of the Program. Frotr

the user point of view, the most important suoroutine is

IN IG3, the first subroutine called, which contains all the

zlobal variables that control the different options

availatle per run. This is the only subroutine that is

changed to run the different experiments, assuming that no

new computational technique is introduced. The selection of

options are:

1) - channel location - the =hannel tray be

shifted north or south by presetting the

north/south latitude lirits in INITG3.

2) - variable geometry - the node positions may

be grouped for more de-se node patterns to

yield higher resolution. Two variables R1

and R2 set the ratio used to vary the

spacing along the x and y axes,

respectively.

3) - initial field wave length and amplitude can

be altered to produce various effects.

4) change the initial mean flow.

- diffusion can be entered for any of the

three prognostic equations.

)- maximum length oO forecast period may be

changed and a print, plot or harmonic
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anal:rsis of any dependent variable may be

requested for any time interval.

Or,:e the experi.Tent is determined, the options

listed above are set. The program is ready to be executed.

The largest part of the initialization pnase

zonsists of establishing the domain and producing all the

finite elerent computational vectors that remain constant

throughout the experiment.

The first several steps in setting up the domain are

concerned with indexing. Subroutine CORES is called first,

where all the nodes (grid points) and elements (triangular

areas) are numbered consecutively starting at the southwest

corner of the domain and moving eastward across each row or

latitude. For each -eleet;- a record--of-al- -o-f its nodes

(ve.-tices) are stored in array ELMENT (M,3), where M is the

total number of elements. To facilitate the inner oroduct

evaluation later, a local numbering system is required for

each element. That is, fcr each element, its nodes are

stored counterclockwise in a positive sense. The first node

however, is arbitrary.

With the domain divided and numbered, a connectivity

list (the correspondence between each node and the neighbor

nodes) is constructed for each node by subroutine CORRIL.

Each node is adjacent to four or six other nodes depending

on whether it is a boundary or interior node, respectively.

These adjacent nodes, plus itself, make up the connectivity
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list for one node. The connectivity lists are then

concatenated sequentially starting with the first nodes

r'OlnectivitY list into the vector NAME (NN), where NN is the

suim o? the nodes in each ccnnectivity list. (i.e. for a

12x12 dorrain with 156 nodes, and equilateral elerents NN =

1044). -or the first time during the initialization phase,

spe-:al attention is given to cyclic -.ontinuity. As

discussed earlier, cyclic continuity is the joining of the

east and west boundaries to create a cylindrical channel.

The connectivity list for these east/west bcundary ncdes

rust be complete to insure proper continuity for the

ca tions later.

The connectivity vector NAE is frequently used

during most computations. Two utility vectors ISTART

(containing the starting location in NAPE for a particular

nod4e) and NUM (containing the number off nodes in its

connecti7ity list) are used to locate and index through the

vector NAME, as will be seen shortly. This same technique Is

used to index through the coefficient matrices and used

during most of the node interaction computations.

The physical properties of the channel are

calculated next in subroutine CEANAL. Eere the north and

south latitude boundaries, which were pre-set in INITGE by

the user, are used to compute the grid spacing along the x

and y axis. Since this channel simulates a belt around the

earth. the iagnitudes of both rIELTAZ and rELTAY (meters) are
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proportional to the width of the channel divided by the

nur ber of grid points in the y axis.

The Cartesian coordinates for each node are computed

by subroutine LOCATE using the DILTAX and CELTA! calcu1ated

in CEANAL. If the option to use varying grid geometry is

desired, subroutine TRANS transforms the grid geometry.

TRANS also computes the corresponding new Cartesian

coordinate values for each grid point and calculates the

rinimuirm r ELTAX and rELTAY within the domain. When the

geometry is changed to create a smaller DELTAX or DELTAT.

the two dirensional advective stability criteria Is also

charged. A new time step DT has to be computed using

equation !II-2E. Since TRANS transforms the geoiretry, it

also computes the new DT.

Another transforiration is required as discussed in

Chapter II. The transformation from Cartesian coordinates to

area coordinates is needed to perform the area integration

o-. the inner products. Subroutine AREA computes -these

transformations exactly as outlined in Chapter II, Section

C. Again cyclic continuity is very important and special

care is needed to insure proper transformation.

Following the area transformation is the computation

of all the inner products that are required to solve the

equations. The advantage of using area coordinates is that

the inner products (function of space coordinates only) are

computed and stored once and used repeatedly without
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re:alculation. Subroutine INNER computes and stores these

Products using the formulas derived in Chapter II.

The coeffiient matrix, dimensioned NxN, where N is

the total number of nodes, is a matrix of coefficients whose

rows are the equations of the syster to be solved. As

liscussed in the computational technique section, the

rerters of this sparse matrix are the Inner products for the

left hand sides of the equations, Three coefficient matrices

are used in the solution of the equations. The diagnostic

equations (III-? through 111-15) use a coefficient matrix

with the inner product <V j,V i > which is constructed by

subroutine AMTRI.1 and stored in compacted form in vector

G(NN) by subroutine ASEM3L. Fowever, when solving the

proanostic equations, these coefficient matrices have a DT

(time step in seconds) term, so that these matrices are not

assembled until the time integration begins. The vorticity

and divergence equations (111-24,111-25) use the coefficient

matrix R(NN) with inner products <VjVix >. <Vj3 y> in .

solving the ?oisson equations for the stream function and

velocity potential, respectively. The continuity equation

(TI-23) uses a combination of inner products in its

coe-feicient matrix (NN) as follows

4
'VjxVix> + < jy Viy> + -2<Vij'Vi> IV-1

1
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to solve the Helmholtz equation. At the start of each time

integratiTh module, subroutine AMTRX2 is called to construct

the two coefficient matrices H and F.

These banded and sparse matrices are ccrpacted into

vectors to save storage during their assemblage by ASIM3L.

The vectors are dimensioned NN, as is NAME, the connectivity

vector, and both use ISTART and NUM to index through them.

This compaction routine was used by Kelley (1976) and Older

'1981) in their models, but was developed by Hinsman (1975).

To illustrate matrix assemblage using an element by

element technique, consider Figure 8. Note that this

illustration is for element number 3, but all elements are

treated in a similar maner. The computational technique

required that for each point (node) describing element 3,

namely nodes 2, 3 and 14 stored in array ELMENT, the inner

product <7J,7 > between those points be distributed to their

proper location in the coefficient matrix.

Sutroutine AMTRX1 builds the inner product nodal

interaction and stores it in matrix 3, dimensioned 33.

Figire 8 illustrates the B matrix for element 3, where the

inner product <V , ,VI > is the multiplicand of the

corresponding basis and test functions, respectively.

The local dispensing of interactions is done in

ASEUBL. Consider the second row of [£3 in Figure 8. These

are the interactions between node 3 of element 3 to the test

EW
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ANrRX builds [B] for one element, passes [] and the element number

associated with (B] to ASEPOL. This process continues till all element

node interactions are assembled In the coefficient matrix.

Fv2 V2 V 2V V 3 v2 1. 4

[Bb, = 3 v v v3 VV4~ EIJW31R.

ABEL - sseables the nods Interactions into the coefficient matrix

(c] , which has the same structure as HiJ0. The following diean-a assembles

Inner product V3V 1 Into the coefficient matrix CC], for element 1.

1 2 13TA M NAM C

I I I I CMI) 1
2 2 13 2 6 2 C(2) 2

ELIM K- 3 2 ,i4 0,-&3 1i0-1 AT) 1 O

4 51 4 16 12
5 21 5 15L 24

28? -6 26 5 152 6 2
288 i 11 3 i5 7 31 5 153 1

5 154 13
155 1035 5 155 14

565 156 10 3 C(10)' 10
Ah pasudo-code START(3) .i 1 3c(1i) 11
do L1 -. 3 (12 2 C12

iIU 31IDT(i) 313 14 -W- (3)+4v

15 C(14)
do - sART(II) -. UAST(ii) LAST( - 15 4 c(15) 15

jj NAIM(J) c(016) 16
do k - 1.-. 3 2 3

kk a TMT(k) 113 15
114 t6

if ( k -J ) then 20 5 C(20) 20
c(o) - eO) * (oi) _--

else contilnue 1L (lot

Lend do i- (1042)
end do 1043 th4 1% 1043

end do 10hI4 145 (10 OW10

Figure 8. ASSembling and storing the coefficient matrix for element 3.
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functicns. AS1T.BL locates nodes 3's connectivity list in

NAMT. using ISTART and NUM. In Figure 8, this list is

delineated by START(3) and LAST(3). Now ASEmBL steps through

the connectivity list for three iterations. ruring each

pass. AS7YBL is searching for one of the three node numbers

for element 3. 'hen a match is found with one of element 3's

nodes (i.e. 2,3 or 14) and node 3's connectivity list (i.e.

1,2,14,15 or 4) the proper position, to which this

interaction is to be added has been found in the coefficient

ratrix. Since NAME and vector C, the compacted coefficient

mat-ix. are dimensioned Ide!'.tically, the same pointer (i.e.

J in Figure 8) is used to index through both arrays. This

procedure is repeated for all elements in the domain to

assemble the coefficient matrix of the equations. The

Pseudo-code for ASEMIL is shown in Figure 8 to facilitate

stepping through this example.

The domain and all finite element work vectors are

initialized at -this po iat. Subr.outiae -EMS.1 T. is -called :iaItLr

to compute interpolation points for the harmonic analysis

subroutines.

The last phase of the initialization process is the

initialization of the dependent variables. The three input

fields geopotential heights, stream function and velocity

potential are computed in subroutine IC using the equation

set T1I-30. Povever, the variables calculated from the

diagnostic equations have to be computed using the input

k TYhW n nW _u



fields. These variables are used during each time step while

solving the prognostic equations.

The diagnostic equations are solved in subroutine

r!PVAR, first during the initialization phase and later

durirg the time integration phase. Each diagnostic equation

calls its own module to compute the value of the forcing

fun-tion and stores the computed values in the vector RES.

These equations all use the same coefficient matrix when

solving the diagnostic equations. Subroutine SOLVER is

sufficiently genereal to solve each equation. SOLVER uses

vector RES and coefficient matrix G to under-relax towards

the solution. As mentioned previously, the coefficient

matrix is strongly diagonally dominant so that three passes

over the domain are sufficient. At the end of DFVAR, output

is generated depending on what print, plct, or harmonic

analysis controls were preset.

This covpletes the initialization phase of the model

and the program for the forecast phase will be described

next.

3. Forecast Phase

The forecast phase is accomplished in two steps. The

first time step is made using two half steps by subroutine

MATZNO. Here the prognostic coefficient matrices are

constructed using half the DT value by calling AMTRX2.

AMT.X2 uses the same computational technique to construct

the coefficient matrices as described for AMTR11.
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Fash of the prognostic eouations 111-23, 111-24 and

1IT-25 calls its own subroutine (CONTFC, VORTEQ and riVEC

respectively) to compute all the terms on the right hand

side, which are stored in the vector RES. After computations

fcr RES are completed, subroutine RELAX solves the equations

by over-relaxation as described in the computational

technioue in Chapter 3. Once the solutions for the fn~l)

time step are comnleted, DEPAR is called to update the

variables from the diagnostic equations. Two passes through

MATZNO advances the solution fields one time step.

The remainder of the forecast period Is Integrated

using the leapfrog scheme. Subroutine LEAPFR performs this

Integration using the identical format as MATZNO, ex:ept

that DT eqrals two DT. At preset times as specified in

!NITG-, the different fields are saved for printing. This

process continues until the final forecast time is reached.

2. UTILITY OrUL7S

Once the equation formulation is completed, as in

Zhapter II, all the inner products and types of

integrations are known. Versatile modules can De written to

perform these computations. Consider a term of general form

(A V ,Vi  > where I is the node about which the term is

evaluated and the J's are the nodes connected to node I, or

the surrounding nodes. The inner product values <Vj,V I> are

already computed and stored for all the nodes, during the

initialization phase of the model.
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The remaining computation to complete tne evaluaticn of

this term is the multi-licatioa of the scalar coefficient of

A at node i with the correspondin.g inner product <VjV for

node :. This requires indexing through node i's connectivity

list stored in vector NAM!, and for each node in the list

rultiply and total the products. The cumulative sum of these

Vltiplications is assigned as node i's contribution for

this term. Subroutine TERM3 performs this exact computation.

All that is passed to TERM3 is the scalar field A and the

sign of the inner product, TERM3 then computes the

contribution for each node in the domain and accumulates it

in the work vector RES.

Three other utility modules are; TERMI, which computes

the first scalar miltiplication for triple inner products

fi.e. (jVj3kVkVi>). The product <VjVkV?, is again already

computed and stored by subroutine INNER. TERMI computes <3kV j

Vk .Vi "> and construct- a compacted vector similar to the

coefficient matrices. This reduces the effort of multiplying

the second scalar to a TERP3 computation. TIRV2 computes

node interaction of the following type <Aj Vjxix>, where both

the basis and the test functions are derivatives. Lastly,

subroutine TERM4 computes node interaction for terms as <Aj V x

,i:!, where only the basis function is a derivative.

When examining the right hand side of the equation sets

111-23, 111-24 and 111-25, it is obvious this implementation

is a subscripting nightmare; however, the use of the utility
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.riodules TERM1 TERM2, TERM3 and TERM4 sium.plifies the

i7Dleientatlon to only determining what order to call the

utility !Podules. Examination of subroutines CONTIT, VORTi4

and rIVEC, which compute the right hand sides for 111-23,

11-24 and 1I1-25 respectively. illustrates this fact. No

other subroutines or calculations were required.

I-plementation of these equations required minirmal effort.

E. 7
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V. PRIMiITIVE MOML EXPERIMENT

The previous two chapters presented the detailed

formulatior and implementation of the vorticity-divergen:e,

shallow water equation model. The results from this model

will be compared with the results f'rom the primitive model

in Chatter VII. To facilitate interpretation of the

corparisons, a brief description of the primitive model

follows. See Kelley (197E) for a detailed discussion Cf the

entire model.

Also presented in this chapter is an experiment which

demonstrates significant improvement of the solution from

the primitive model. Kelley's implementation used elements

which were right triangles. Older (1981) showed that

equilateral elements are far superior to triangular

elements. This experirent re implements the primitive rrodlel

using equilateral elements and a comparison is made between

the results of both implementations.

A. ,CrL UESCRIPTION

A form of the barotropic, shallcw water, primitive

equations developed by Phillips (1959) is used as the

governing equation set for this model. In Cartesian

coordinates the equation set is
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The finite element formulation of this set of equations

evaluates the height and velocity components at the same

nodal points. This is an important consideration, because

the other models (the linearized model, see Chapter VI. and

the vorticity-divergence model, see Chapter III) either

stagger the dependent variables or have the property of a

staggered formulation. When comparisons are made between the

models, it is this lattice structure that is being compared.

This form of the shallow water equations includes

gravity waves as a solution. Gravity waves have a maximum

phase speed of about 3e0 meters/second. When the correct

time stem is calculated using equation 111-26, a

considerably smaller time step is obtained compared to the

larger time step permitted in the vorticity-divergence

fcrmulation. This is an important feature. If solutions from

all models are equally as good, the best formulation would

be determined using the computational time required to

produce the desired forecast.
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All models use the same lomain structure. In fact, the

dorain described in Chapter III was patterned after the

lomain implemented by Kelley. Again, this domain simulates a

belt around the earth, with cyclic continuity which

eliminates the east-west boundaries. Rigil boundary walls

exist at the equator and at 30 degrees north latitude. The

domain is composed of a 12x12 point mesh and subdivided into

the right triangular elements illustrated in Figure 9.

Notice that the grid points are not shifted as in the

equilateral element implementation shown in Figure e.
The following boundary conditions are Imposed:

1) - no cross channel flow at the latitude

boundaries.

2) - a geostrophic balance at the channel walls

imposed on the continuity equation V-1.

This model has a simple second order diffusive term in

the equations of motion V-2 and V-3. However, for the

purpose of evaluating these- different forruilatinirs, this

option was not implemented during the comparison phase.

Initial conditions consist of a single wave in the x

direction and a half wave in the y direction. The initial

fields for the three lependent variables are shown in Figure

10. The taximum zonal wind perturbation of 5.5 meters/second

is superimposed on a mean zonal flow of 10 meters/second.
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This zursory description of the primitive model mentions

only those significant features that will weigh heavily in

the ccmparisions later. The Galerkin Implementation of this

model is similar to that presented in Chapters II and !II

and the system of equations is solved using a Gauss-Seidel

iterative procedure. Further details concerning this

primitive model are given in Kelley (1976).

B. RESULTS

This experiment involves the shape of the elements. As

mentioned previously, Kelley's implementation subdivides the

domain into right triangular elements, as illustrated in

Figure 9. Considerable small-scale noise was observed by

Kelley in the 48 hour forecast solution.

The transition from right triangles to equilateral

triangles changes the size of the domain. With right

triangles. the4x and~y grid spacings are equal (300 KM). A

12x12 grid matrix "has a length and width of 3600 .1m With

equilateral triangles, the~z and 4y grid spacings are no

longer equal. Arbitrarily, the &y grid spacing is held

constant (300 KM) and a newax grid spacing computed by

Ax = ^y/cos(30) V-4

A 12x12 grid matrix vith equilateral elements has a width of

300 KM and a length of 4045 KM.

Figure 11 contains the 48 hour forecasts produced using

both types of elements. The three dependent variables fields
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are compared for each. The small-scale noise that Kelley

cbserved is present. The three fields shcw varying degrees

of distortions, which are especially noticeable along the

boundaries.

Older (1981) found that th~koot mean square error (RMSE)

was reduced 20 percent by using equilateral shaped elements.

This improvement is apparent on viewing Figures llb, d and

f. The contours are smooth and the boundaries are

noise free. Kelley showed excellent treatment of wave

propagation by this primitive model. The lowest resolution

grid '6x6) tested by Kelley was within four percent of the

true phase velocity. Changing the element shape had no

apparent effect on the phase velocities.

Pecause the outcome of this experiment was a

significantly irproved forecast solution, future comparisons

with the primitive model will be made using equilateral

elements.
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Le revious cha-..,ter Heronstratee how t e srane of the

ly'rv the solution. Viias.T a-4

t:e'iC I I5 used different-y sha-Iae basis f±unCti cn-

o a 1lrearized eo ,atlor set to :rOdCce exoellent sol.tions

when: 1rpl.eA to the geestrophic ad.ustrent i-rcbleir.

Spatial staggering of dependent variables 1: 4-1nlte

difference fcrmulations has given r'ucn better scluticns tc

the zeostroDhic ad4usttrent process, end these forrs are

w!.elY used in meteorology. Schoenstadt '190 -mound sirilar

results with finite elerrent formulations with piecewise

lir.ee-basis ftrnctions. However, staggering nodal points is

net : convenient rethod to implerent , espe-:ially i n

tWl-diTe-sions with irregular boundaries, so alterna:ive

she. es are needed.

The irplerentation of the alternative scheme introduced

',:"lliars and Zienkiewicz (Ic81) are presented in tits

ihanter. As rentioned above, this forrulation uses differenlt

bas i functions for the height and the velcityr fl"ds. One

ot' the basis functions is piecewise linear, whle the other

is pie-ewise constant, as is illustrated in Fieure 12 fcr a

ore d mensional domain.
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a) Piecewise linear basis function.

1
x

b) Piecewise constant basis function.

Figure 12. Different shaped basis functions.

77'



A. 1CUATION RYFORMULATION

The primitive form of the shallow water equations

Dresented in Chapter V (V-1,V-2 and V-3) is used to derive

the linearized equaticns needed for this experiment. The

velocity equations V-2 and V-3 remain unchanged and a linear

basis function (V7) is used to approximate the u and v

variables.

The continuity equation V-I is linearized as follows:

U - - + - ) VI-I

negligible

where I is the average geopotential over the domain. A

piecewise constant basis function (W ) is used to

approximate the geopotential. This linearization is

reasonable in this case because the Rossby radius of

deformation b4 /fis much larger than Ax (see Williams and

Zienkiewicz (1981)1. The Galerkin method is applied to this

linearized equation set using a piecewise linear test

function for V-2 and V-3, and a piecewise constant test

funition for VI-1.

The piecewise constant basis function has the property

of displacing the geopotential to the centroid location of

the elements, which should give the same effect as

staggering the grid points, as seen in Figure 13. The

density of geopotential data in the domain is now greater

7e
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than the density of the velocity data. Instead cf a

eeopotential value for each node, there is one averaged

val-ie cver each elemrent.

The final form of the Galerkin equation for VI-l, V-2

aid V-3 after performing the tir-e differencing is:

n DIwj,..> = jn-w jni> + atun<V ji 7jy V -2

Ur+J V in~ - 4t[ (WjJki) .I

+V un Vj OVkyV > - f~v (V1 OV >1 VI-3
J k ky I J

J, Vk~ J IVky IV I>
Vj n n nn-

n-l(V 1,v1 > - &t[¢j<2ijy,V1 > UjvVV V x V >

vjvk<VjVkyVi> - f 0u .<VjVi>] V 1-4

This linearized set of equations VI-2, VI-3 and VI-4 is

solved using a 'auss Seidel iterative procedure. It is worth

rrentionin? that the coefficient matrix <Wj ,Wi> in equation

VI-2 has all non zero coefficients equal to one, since the

integration of the inner product <WjWi> involves piecewise

constant functions.

This equation set is implemented rather than the

equation set V-i, V-2 and V-3 using all of the existinz

Dri,.itive model code. The major modification involved the

way that the geopotential was referenced. With an average

geopotential over each element instead of a value at each

node for a 12x12 mesh, there are 288 geopotential pciits

versus the Ie velocity (u,v) points.

.---- T--. .~-. -8-



E. RESULTS

The results from this linearized .odel are compared to

those from the primitive model. The initial field for this

exDerirent, Figure 14 has a marrimuum perturbation zonal wind

that is one fifth of the value used in Chapter V. Figure 10.

The rean zonal wind remains 10 meters/second. The 48 hour

forecast solutions for each field are compared in Figure 15.

This alternative formulation shows some promise,

although there are some minor perturbations In these

contours compared to those in the primitive solution. No

explanation is offered for this small-scale noise, although

possibly the other formulations presented by Williams and

Zienkiewicz (1981) would improve the solutions.
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Figure 14. Initial fields for both the primitive model and the

linearized model.
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41. VzRTICITY-:_IVZRGEN .-c MC:_: -XPERIPZN:

As in the previous two chapters, a comparison between

two models will be presented. The results from the

vorticity-divergence irodel are corpared to the results from

the priritive model. To fully exploit the 4iIfferences

between the models performances and indicate the strengths

and weaknesses of each formulation, three domain -eometries

and three initial conditions are nsed. All solutions are at

42 hour. except for one case which was extended tc 96 hours.

From these two finite element formulations sore

additional insight is obtained concerning the execution time

required as the grid resolution changes. Lastly, a brief

discussion on the sensitivity of the computational technique

is riven.

A. TEST ZOMAINS AN: INITIAL CON"LITIONS

The three domain geometries used in the model evaluation

are illustrated In Figure 1E. All domains consist of a 12xi2

element mesh with equilateral shaped elements (15e grid

points! and c:vclIc continuitzr Is imposed on the east and

west boundaries. The domain has dimensions of 4045 IM along

the x axis and 3503 K ' along the y axis.

The regular domain (Figure lea) has a uniform

distribution of grid points, with a minimum grid spacing

- 84
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aloe the x axis of 337 KM. This is the rost !ongenial

dorrain and oroduces the best results.

-he s€ooth do-air (Figure 16b) has a smoothly 7aryJn-R,

distribution of grid points. This technique allows a smooth

variation of resolution. It was developed by %lder (iS1).

who showed how it significantly reduced noise at all

freouericies compared with other variable grid domains.

The degree of resolution variation Is accoplished by

selecting an appropriate value for the ratio of Taximum

stretch to minimum shrink along both axes. The exzeriments

presented in this chapter use a 2.2 ratio for both

directions. This produces a grid point ccncentration In the

right center of Figure 16b and coarse resolution at the top

and bottom left of the domain. The minimum grid spacing

along the x axis is 199 KM in the dense grid point area.

The third domain was the least hospitable geometry fcr

both models. The abrupt domain (Figure 16c) has a dense grid

point concentration on the left and coarse spacing cn the

right of the doirain. The miniimum grid spacing along the x

axis is 168 KM in the area on the left. The grid spacings

are uniform except for the abrupt change along the center.

Although these three domains are simple In structure,

they are adequate to test both models' performance. To

"urther enhance some differentiating characteristics between

the two formulations, three initial conditions are used. Two

have previously been described in Chapters V and VI. Their
i,

t
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rai. istinguishing feature is the arbitrary perturbation

arnTltu~e '.-A) magnitude. The nearly linear case has an APA

= 1.1 /s fcm-ared tc 5.5 r/s for the more nonlinear case.

All initial -conditions have a 1Z Zis rean flow comtonernt.

,With the nearly linear case both models behave well. The

introduction of the more nonlinear initial disturbance

illu1strated the boundary and com;utational technique

sensitivitr. The third initial condition is the =earl7

linear initial field with the wave length equal to half the

dorain length. This has the effect of producing two waves

with the domain.

3. TEST CASE COMPARISCNS

The comrparisons between models are divided according to

the domain geometry. The primitive model has three fields;

4eoDotential, ,i and v. The vorticity-divergenze model has

seven fields: geopotential, stream function, velocity

potential, u, v, vorticity and divergence. The geopotential,

u and v will be the only fields used for the comparison.

1. Regnlar Case

The regular domain georetry (see Figure la) is used

'or this first comparison. The initial conditions have an

APA 1.1 !/s, as shown in the contour plots In Figure 17.

The 8 hour solutions for both models are presented I
in Figure 18. As anticipatel, all of the solutions have

87
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sroothly -ontoured fields with no noticeble noise and their

phase velocities are comparable.

S.h the nearly iientical solutics, the

d1sti nui shing feature between the , cdels is the

Corutational timre. The computational tire is letermi-ed by

the size of the tire step each model is allowed to use as

indicated on earation III-2 E. -For this domair the gri!

snacinz is 337 7.1. The raxirum, phase velocity possible is

dlifferert for each model. The primitive model allows gravity

waves so c = 300 m/s whereas the vorticity-divergence rodel

filters out these high frequency waves. A c = 10 rr/s is used

for this formulation.

Table I

iodel ax c at 0 of steDs CPI units
.( ,Y) (m/s) (sec) (Iteration.s) (sec)

Pi 337 3458 376 148.5
337 10 13,755 13 33.

Comparisons of the somputational times for a 48 hour
forecast betwee. the primitive model and the
vorticity-divergence rrodel.

Table 1 compares the results of the computational

ti.mes for both models. The vorticity divergence model

produced as accurate results over the regular domain using

22T of the computational tire needed by the primitive model.

In fa(ct from geostrophic reasoning the vorticity-divergence

m odel should produce better forec-sts when small scale

features are present.

• .- .,.. --.. . ,--mm[ ]nn,



2. Smooth Case

-The srooth dorrain geoetry (7.1gure ILb) is used in

this second comnarison. he initial fields shown in -rU-e

c: have a disturbance amplitude of 1.1 rris.

The 48 hour solution comparison is .resentel in

Figure 20. All fields again have smooth contcured nl:ts.

Close inspection of the two u fields, Figures 20c and d,

shows that the primitive u field has small kinks along some

contours and a weak tilt near the central boundary acdes,

although this may be a function of the plotting routine.

Notice the good symmetry for the vorticity-divergence u

field.

As in the regular case, this smooth ex.oerinent

zroduced two acceptable solutions. Again, the computaticnal

time is the differentiating criteria.

Table 2

yodel AX c dt f of steps CPU units
(KM) (m/s) (sec) (iterations) (sec)

Pi 199 3ee 271 e38 304.9
V-D 199 10 8124: 21 49.5

Comparison of the corputational tires for a 48 hour forecast
betwee, the primitive rrcdel and the vortl ity-dilergence
model using the smooth domain.

Table 2 corrDares the computational times for both models.

The vorticity-divergence has a 83.81 saving of CPU time.

Gilf

t



,IT

72, A

31 1l INI T Ii:AL U F!;EL 3 1 M i

:. 

to

;j.0 44.

o f; ' 1 . l ' f"/ , , , , ,

t i 92

:30 60,7.00. 0..., - . co.. < .".o ~ .O.,0,
B3 INITU iL U FI L {G/MJ

11t '\ " '/ \

\'\ Io-",' , , l

j ] I T, L ,/ -__ : ,<

Figure 1 . Initi l field fol / o h t e v i i i e a d v r i i
dlv = e ce ode s u ing th sm ot o.i *. e t r a io m l t d

of l..i .Is

| ,., 
... ..; , , /



::i

*1

21 i -

isi

i~a o,, o A. 80.30 2 0 0.3 ..0..0 ., ., 0.3o .,. , , .0 ,o. Do-iO'w , 1. w8
r 0 (GPMJ PE MODEL 0) 0 IGP,. v-C MUOEL

3 3

. .. 0 00.. (. -0. A, ]11[ t\',,., ' /\!"K K.4.5.,2

11.0 10 a J " *\

C U (MIS) PE MODEL O U (MIS; v-: -OEL

3 93

! • )

' ! . . -

ti : , .. : " "' . . " " '

.'./ .,, , " . .?..'

'4" ,</ J ' .. . ""° ' ''

"Jj 0"...3 1""3" " "A0 ~ U. ..o.' :". oo --s.o ";o so oo' ' . "'"'3 80,,0

E( V (M/S] PE MOD. . , V v ,'S,'5 'v-. ' OEL -

i Figure 20. 48 hour forecast comparison between the primitive model

and the vorticity-divergence model using the smooth domain. (APA -

1.1. m/s)

93

L < . ;:, - -..-,. , - - . , - - -..-



in an effort to contrast the co^putaticnal accuracy

cf the models, .is experiment Is repeated using the 7-ore

ror4near initial case :--ire 21 sh-ws *:e itIa "Ie 1As

with APA 5.5 rr/s. This larger initial disturbance is

reflected in the greater geopotential a:plitude an!

rraznitudes of the contcur lines.

Fi ure 22 shows the 42 hour solution comparison. As

In the more linear case presented above, all of the plots

have smooth contours with no nCticeable noise. The

vorticity-dlvereence gecpotent.al field, Figure 22b, has the

ridge e.tending farther north, and flattening of the

scuthernmost contour, than does the primitive geopotential

field, Figure 22a. The mean geopotential heights for both

models have also increased. The primitive mean geopotential

is now 49e8e gDm and the vorticity-divergence geopotentia!

is 496010 gpm.

These two discrepancies indicate that the boundaries

are not handled accurately. ruring the irrlerentation of the

vorticIty-divergence model, treatment of the boundaries was

the most troublesome phase. The vorticity-divergence

forrulstion is a complex equation set and ti.T'e limitations

restricted further investigation of more sophisticated

boundary conditions.

This same initial condition Ir now extended to a W;6

hour forecast, which is shown in Figure 23. The mean

vorticity-divergence ceopotential increased tc 496O gpm, j
S2'
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whereas the mean primitive geopotential remained constant.

All fields have smooth contours. Close inspection of both u

fields, Figure 23c a.nd d, sh.ows a slight skewing of the

:ontours along the central channel grid points. The

vorttity divergence u field has the Iost pronounced

deviations. A hypothesis for this skewing, explaited further

below, Is that it is caused by the computational technique

e-Dloyed. The relaxation schemes are extremely sensitive and

fine tuning of the relaxation coefficient would have

required more time than was available.

Table 3

Model Ax c At # of steps CPU units
(EX) (m/s) (sec) (iterations) (sec)

?i 11-9 3eO 2?1 127E S.
V-D 199 10 8124 42 91.3

Coroarisoa of the corrutational times for a 9E hour forecast
between the primitive model and the vorticity-divergence
model using the smooth domain.

Table 3 shows the comparison between both models for

the GE hour forecast. A savings of 85 percent is realized

with the vorticity divergence model.

The above experiment pcints out the two areas where

the vorticity--divergence model is presently weak, the

increase of the geopotential and the sensitivity 2f the

relaxation coefficients. 3oth these weaknesses can be

improved and are not a result of the formulation but of the

tiplementation. At oresent, their influence is not detected
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ey-ept in extremely long forecasts, such as in the G hour

exaple. TVirther experiments may still be required if they

Ieronstra !e siznifl-ant differences in the solutlons c' the

two models.

"The last expoeriment on the smooth dorain uses the

more linear initial condition APA = 1.1 -/s, but its wave

lenzth is divided by two, so that two shorter waves are

propagated through the channel. The initial -onditions are

shown in Figure 24. recreasing the wave length has the same

effect as decreasing the density of grid poirts. 1i this

case six grid points are used to describe the wave structure

versus the 12 used in the previous cases.

The 4 hour comDarisons are shown in Figure 25. As

in all previous cases, a computational time saving of S4% is

Pained with the vorticity-divergence model. With fewer grid

points describing the wave structure, m'ore small-scale roise

is introduced into the solution. Comparing the primitive

geopotential field, Figure 25a, to the Initial geopotential,

Fiu i're 24a, shows a dampening of the wave amplitude, whereas

the vorticity-divergence geopotential, Figure 25b,

correlated well with the initial geopotential.

The high frequency noise is evident on both u

fields, Figures 25c and d. The primitive model u field is

poorly defined along the boundary and becomes irregular over

the interior grid points.
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The smooth domain allows a variable resolution of

zri points and produces excellent results. As the wave

en- th zets shorter, or the forecast length gos Irger,

sc.e small-scale noise is apparent, especially with the

primitive formulation.

3. Abruot Case

The abrurt case comparison uses the abrupt iomain

geometry (see Figure 16c). This grid point configuration is

used to 'urther illustrate the effects of spatial

resolution. The previous case using the smooth domain and

half wave length introduced noise into the sclution, but the

spatial resolution changed slowly and gradually.

Consider the transition necessary in an operational

model, where the-luxury of haviav a mong smooth transition

into the region of high resolution fray not be possible. The

abript domain is an example of the results obtained when

sDatial resolution is decreased rapidly.

The initial fields are shown in Figure 26. The more

linear case, APA = 1.1 m/s, is used to eliminate effects due

to the initial field, so that only the effects due to the

grid geometry are seen.

The 48 hour comparisons are shown in Figure 27. 3oth

4 solutions are affected by this geometry, but the primitive

solutions are totally disorganized and unacceptable.

Table 4 shows the comparison of computational times

for both models for a 48 hour forecast. An 8V1 savings in
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CPU time is obtained using the vorticity-divergence model.

'ct only is there a computational savings with the

vo rt i:i ty-d I7ergenne mcdel, but the solutIcn is

sionificantly better than the primitive model.

Table 4

Moeel Ax c At # of' steps CPU units
,KY) (m/s) (sec) (iterations) (sec)

PE 1 300 228 756 368.9
V-t 168 10 6858 25 55.7

Comparison of the computaional times for a 48 hour forecast
between the primitive model and the vcrticity-divergence
model using the abrupt domain.

C. COMPUTATIONAL SENSITIVITT

This section vill offer an explanation for the skewing

o the contoirrs in the-96 hour forecast solution-over the-

srooth domain fFigure 23). As mentioned Dreviously, there

was rot enough time available for fine tuning the

overrelaxation coefficient, which is used while solving the

system of eouations. The overrelazation coefficient may be

very sensitive and small changes can, on occasion, radically

change the rate of convergence. The optimal value of the

overrelexation coefficient depends on the specific form of

the coefficients of the equation and the error distribution.

The eouation set to be solved consists of three

enuations and each equation required its own relaxation

coe'ficient. When solving tb equations over the regular

domain, the entire system is well behaved and an optimum
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relaxation coefficient is easily determined. However, as the

-,or"tn -ecretry changes, the syste, of eouations dc nct

-onverze as ranidly and the relaxation zoefficient requires

"urther fine tuning.

The 9E hour forecast uses the smooth domain. The

mid-latitudinal grid points are compacted, creates a lenser

belt in the middle of the channel. The coefficients

originally computed using the regular domain need

ad.-istments to properly solve the equations.

To illustrate the significance for fine tuning the

relaxation coefficient, consider the series of plots in

Figure 28. The vorticity divergence equation set can be

simplified by assuming the flow is non-divergent, so that

onl7 the vorticity equation needs to be solved. Figure -28a

is the 48 hour vorticity field using this eqiation over the

regular domain with an overrelaxation coefficient of I.3.

The field is well defined with smooth contours.

iure 28b is similar to the case in Figure 28a except

that the smooth domain is used. Notice the V-shaped kink in

the oattern with a steeper slope in the upper half. This

i"ereased bias in the upper half is caused by relaxing the

field in the same direction during each pass over the

domain. When the direction is reversed after each pass. the

exarerated bias in the upper half disappears, as is seen in

Figure 28c. However, the V-shaped kink is not eliminated.
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Varying the relaxation coefficient from 1.3 to 1.2i?

prod:ces the much improved solution in Figure 22d. If the

relaration soefficlents for the other two equatio-s could

also be fine tuned, it appears that improved solutions woul±

resilt. There are also other relaxation techniques available

that have potential for improving the solution while also

corvergine at a faster rate. Some oP these techniques will

be tested in the futuer using this model.

I
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VIII. ONCLUSIONS

This research investigated different finite elerent

formulations for the shallow water equations. The

twc-dimensional dorrain was a channel which simulated a belt

around the earth. Analytic initial conditions were used to

simplify the co,parisons. Two formulations were examnled;

one using different shaped basis functions and the other

uising a different form of the equation. lach was compared to

the uriritive form of the shallow water equations that was

developed by Kelley (1975).

The use of equilateral shaped elements which was

suggested by Tr. M.J.P. Cullen significantly improved the

solutions compared to Kelley's irodel, which originally used

right triangles as basis functions. Most of the other

studies in this thesis used the equilateral trianles.

Williams and Zienkiewicz (1981) suggested the use of

.iecewise linear basis functions for the velocity field and

plveevise constant functions for the height field. This

formulation was tested with a linearized continuity

equation. The results were poorer than those obtained with

lelley's model.

Most of the effort in this thesis was devoted to

implementating and testing a vorticity-divergence model

. 9
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similar to the ones developed by Staniforth and Mitchell

(197 ) and Cullen and Hall (1979). Several tests were

presented which comrDare this formulation with Kelley's

irodel. it was found that this +cdel executes approximately

one order of magnitude faster than does the vrimitive

for-rlation used by Kelley. Secondly, as the spatial

resolution between grid points decreases, this formulation

Droduces a solution that is far superior to the primitive

form. A disadvantage is its computational sensitivity, which

requires fine tuni.ng in solving the elliptic equations for

certain geometries. It also requires 25 percent Tore

computer storage, due to the more complex equation set and

the additional variables that are treated.

implenentation of finite element models is not easy.

Fowever, there is a lot of generality and redundancy

It"bedded in the computations. Versatile modules were written

which significantly reduced the effort in implementing the

vorticity-divergence model.

Firther research is suggested using this finite element

formulation. !t has accurate phase propagation, is able to

handle variable grid geometry, reduce the small-scale tolse

and decrease the model's execution time. Specifi:ally rore

advanced methods of solving the elliptic equations should be

investigated. Finally, the formulation should be tested with

small-scale forcing, where its advantages should be most

evident.
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